翻訳と辞書
Words near each other
・ Dyad (novel)
・ Dyad (sociology)
・ Dyad (video game)
・ Dyad pedagogy
・ Dyad symmetry
・ Dyadic
・ Dyadic cubes
・ Dyadic developmental psychotherapy
・ Dyadic distribution
・ Dyadic Encoding
・ Dyadic kinship term
・ Dyadic rational
・ Dyadic space
・ Dyadic Space (cell biology)
・ Dyadic space (disambiguation)
Dyadic transformation
・ Dyadics
・ Dyadovsko
・ Dyadovtsi
・ DYAF
・ DYAF-TV
・ Dyagilevo
・ Dyah Pitaloka Citraresmi
・ Dyak
・ Dyak (clerk)
・ Dyakia
・ Dyakia (gastropod)
・ Dyakia hendersoniana
・ Dyakia salangana
・ Dyakiidae


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dyadic transformation : ウィキペディア英語版
Dyadic transformation

The dyadic transformation (also known as the dyadic map, bit shift map, 2''x'' mod 1 map, Bernoulli map, doubling map or sawtooth map〔(Chaotic 1D maps ), Evgeny Demidov〕〔Wolf, A. "Quantifying Chaos with Lyapunov exponents," in ''Chaos'', edited by A. V. Holden, Princeton University Press, 1986.〕) is the mapping (i.e., recurrence relation)
: d: [0, 1) \to [0, 1)^\infty
: x \mapsto (x_0, x_1, x_2, \ldots)
produced by the rule
: x_0 = x
: \forall n \ge 0, x_ = (2 x_n) \bmod 1.〔[http://www.maths.bristol.ac.uk/~maxcu/Doubling.pdf Dynamical Systems and Ergodic Theory - The Doubling Map], Corinna Ulcigrai, University of Bristol〕
Equivalently, the dyadic transformation can also be defined as the iterated function map of the piecewise linear function
: f(x)=\begin2x & 0 \le x < 0.5 \\2x-1 & 0.5 \le x < 1. \end
The name ''bit shift map'' arises because, if the value of an iterate is written in binary notation, the next iterate is obtained by shifting the binary point one bit to the right, and if the bit to the left of the new binary point is a "one", replacing it with a zero.
The dyadic transformation provides an example of how a simple 1-dimensional map can give rise to chaos.
==Relation to tent map and logistic map==
The dyadic transformation is topologically conjugate to :
* the unit-height tent map
* the chaotic ''r'' = 4 case of the logistic map.
The ''r'' = 4 case of the logistic map is z_=4z_n(1-z_n); this is related to the bit shift map in variable ''x'' by
: z_n =\sin^2 (2 \pi x_n).
There is semi-conjugacy between the dyadic transformation (here named angle doubling map) and the quadratic polynomial. Here map doubles angles measured in turns.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dyadic transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.